Tetrahedron Letters 49 (2008) 4213–4215

Contents lists available at [ScienceDirect](http://www.sciencedirect.com/science/journal/00404039)

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

A ¹⁵N NMR study of tautomerism in dimethyl dihydro-1,2,4,5-tetrazine-3,6-dicarboxylate

Antonín Lyčka ^{a,}*, Štěpán Frebort ^b, Numan Almonasy ^b

^a Research Institute for Organic Syntheses (VUOS), Rybitví 296, CZ-533 54 Pardubice 20, Czech Republic ^b Department of Technology of Organic Compounds, Faculty of Chemical Technology, University of Pardubice, CZ-532 10 Pardubice, Czech Republic

article info

Article history: Received 18 March 2008 Revised 20 April 2008 Accepted 30 April 2008 Available online 4 May 2008

Dedicated to Professor Dr. Jaroslav Holeček on the occasion of his 75th birthday

Keywords: Dihydro-1,2,4,5-tetrazine 15 _N NMR n J(¹⁵N,¹⁵N) Tautomerism

ABSTRACT

Dimethyl dihydro-1,2,4,5-tetrazine-3,6-dicarboxylate can exist either in 1,2- or 1,4-dihydro tautomeric forms. The ¹⁵N NMR spectra of dimethyl dihydro-1,2,4,5-tetrazine-3,6-dicarboxylate were measured at the 15 N natural abundance level as well as in 15 N doubly labelled selectively and in 15 N completely labelled compounds (20% ¹⁵N). The $J(^{15}N,^{15}N)$ value was determined in ¹⁵N completely labelled compounds (20% ¹⁵N) using 1D ¹⁵N INADEQUATE and was found to be 12.2 ± 0.2 Hz in deuteriochloroform, acetonitrile-d₃, DMSO-d₆ and CD₃OH. Very similar ¹⁵N chemical shifts and ¹J(¹⁵N,¹H) values were also observed in all the solvents. This indicates that compound 1 exists completely in the 1,4-dihydro tautomeric form (i.e., as dimethyl 1,4-dihydro-1,2,4,5-tetrazine-3,6-dicarboxylate) in all the solvents tested. - 2008 Elsevier Ltd. All rights reserved.

3,6-Disubstituted dihydro-1,2,4,5-tetrazines can exist either in 1,2- or in 1,4-dihydro tautomeric forms (Fig. 1).

Rau and Hu^1 performed an X-ray study of diethyl dihydro-1,2,4,5-tetrazine-3,6-dicarboxylate $(X = COOC₂H₅)$ and found that in the solid state this compound exists as the 1,4-dihydro derivative, the six-membered ring having a boat conformation. The 1,4 dihydro tautomer exists preferentially in solutions, $²$ $²$ $²$ however, both</sup> 1,2- and 1,4-dihydro tautomeric forms were mentioned in a recent paper³ in which compounds with different substituents X were studied in hexadeuteriodimethyl sulfoxide solution. The authors determined ¹H, ¹³C and ¹⁵N chemical shifts as well as $^nJ(^{13}C, ^1H)$ and n J(15 N, 1 H) coupling constants, however, the conclusions concerning tautomerism were somewhat ambiguous.

The spectral problem arises because both 1,2- and 1,4-dihydro tautomers are symmetrical molecules giving the same number and the same types of NMR signals. The tautomerism can be solved under these circumstances by comparison with suitable model compounds, prediction of chemical shifts or applying computational methods. However, there is no doubt that experimental methods, giving convincing and conclusive evidence about the tautomeric equilibrium, would also be desirable.

The aim of this Letter was to analyse the 1,2- versus 1,4-dihydro tautomerism (Fig. 2) in dimethyl dihydro-1,2,4,5-tetrazine-3,6-

Figure 1. Formulae of 3,6-disubstituted 1,2- and 1,4-dihydro-1,2,4,5-tetrazines.

Figure 2. Formulae of dimethyl 1,2- and 1,4-dihydro-1,2,4,5-tetrazine-3,6 dicarboxylates.

dicarboxylate (1) using ¹⁵N enriched substances in several solvents.

Since the tautomeric changes occur at the nitrogen atoms, $15N$ NMR spectroscopy should be an ideal tool to differentiate the forms. Palmas et al.^{[3](#page-2-0)} measured $15N$ chemical shifts as well as n J(15 N, 1 H) coupling constants at the natural abundance level of the 15N nucleus in 3,6-disubstituted dihydro-1,2,4,5-tetrazines,

^{*} Corresponding author. Fax: +420 466 823 900.

E-mail address: antonin.lycka@vuos.com (A. Lyčka).

^{0040-4039/\$ -} see front matter © 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2008.04.161

however, the conclusions concerning tautomerism remained incompletely solved.

Therefore, we decided to use 15N labelled compounds. First, we prepared (by a known method^{[4,5](#page-2-0)}) ¹⁵N doubly labelled dimethyl dihydro-1,2,4,5-tetrazine-3,6-dicarboxylate using $Na^{15}NO_2$ (20%) dihydro-1,2,4,5-tetrazine-3,6-dicarboxylate using Na¹⁵NO₂ (20%
¹⁵N) and recorded NMR spectra. The ¹H and ¹⁵N NMR spectra were recorded on a Bruker Avance 500 spectrometer operating at 500.13 MHz and 50.68 MHz, respectively. The 15N chemical shifts were referred to external neat nitromethane in a co-axial capillary (δ = 0.0). The negative values of ¹⁵N chemical shifts denote shifts of signals to lower frequencies with respect to the standard. We observed two ¹⁵N resonances in the ¹⁵N NMR spectrum of ¹⁵N doubly labelled dimethyl dihydro-1,2,4,5-tetrazine-3,6-dicarboxylate (Fig. 3).

This approach did not lead to a final conclusion. If no proton exchange occurred, only one ¹⁵N resonance should be observed as is clear from structure 1a (Fig. 4). Proton exchange can, however, follow either path A or path B, both leading to structures that would give two $15N$ resonances in the $15N$ NMR spectrum (two different nitrogens in compound 1b and the equimolar equilibrium of forms 1a and 1c, see Fig. 4).

We realised that solving the problem required determination of the H J J ¹⁵N,¹⁵N) coupling constants. Previously we succeeded in measuring $"$ J(¹⁵N,¹⁵N) coupling constants in (¹⁵N(enriched)– $15N$ (natural abundance)) pairs^{6} provided the measured compound was very soluble. Unfortunately, the solubility of dimethyl dihydro-1,2,4,5-tetrazine-3,6-dicarboxylate is rather low (especially in CD_3CN and CD_3OH) and, thus, it was necessary to prepare completely 15N labelled dimethyl dihydro-1,2,4,5-tetrazine-3,6dicarboxylate^{[4,5](#page-2-0)} using $Na^{15}NO_2$ (20% ¹⁵N) and (¹⁵N)-glycine (20% ¹⁵N) (Fig. 5).

1D ¹⁵N INADEQUATE was optimised for $J(^{15}N,^{15}N)$ = 6 and 12 Hz and the experimental digital resolution was 0.18 Hz/point. Compound 1 was dissolved in CDCl₃ (30 mg in 0.6 ml of solvent), CD₃CN (saturated solution), $(CD_3)_2$ SO (25 mg in 0.6 ml of solvent), CD_3OH (saturated solution) and the spectra were recorded at 300 K. The ¹⁵N chemical shifts and ¹J(¹⁵N,¹H) and J(¹⁵N,¹⁵N) coupling constants are collected in Table 1.

In all the solvents, we observed $J(^{15}N,^{15}N)$ coupling constants being 12.2 ± 0.2 Hz (Fig. 6). We believe that this *J* value belongs undoubtedly to a one-bond $J(^{15}N,^{15}N)$ coupling constant corresponding to an $-NH-N$ arrangement, that is, to dimethyl 1,4dihydro-1,2,4,5-tetrazine-3,6-dicarboxylate. We previously determined very similar $1/(15N)^{15}N$) coupling constants in substituted azo compounds^{[7](#page-2-0)} ($Ar^1-N=N-Ar^2$) being ca. 15 Hz and in hydrazones⁷ (Ar¹–NH–N=X) ¹J(¹⁵N,¹⁵N) being ca. 11 Hz. In contrast, much smaller two-bond $J(^{15}N,^{15}N)$ coupling constants would be expected if the structure of compound 1 corresponded to dimethyl 1,2-dihydro-1,2,4,5-tetrazine-3,6-dicarboxylate since it is known that $2/(15N, 15N)$ coupling constants are in the range 1–5 Hz.^{[8,9](#page-2-0)}

The NMR data in Table 1 show that dimethyl dihydro-1,2,4,5 tetrazine-3,6-dicarboxylate (1) exists exclusively in the 1,4-dihydro tautomeric form in different solvents (low polar and aprotic CDCl₃, CD₃CN, polar and aprotic $(CD₃)₂SO$ and polar and protic CD₃OH). Moreover, no difference was observed in the $\frac{1}{1}$ ($\frac{15}{1}$ N, $\frac{1}{1}$ H)

Figure 5. Formulae of completely $15N$ labelled dimethyl 1,2- and 1,4-dihydro-1,2-,4,5-tetrazine-3,6-dicarboxylates.

Figure 3. ¹⁵N NMR spectrum of ¹⁵N doubly labelled compound 1 in deuteriochloroform measured using inverse-gated decoupling (decoupler 'on' during acquisition time only).

Figure 4. Possible proton transfer among ¹⁵N doubly labelled forms 1a-c.

Table 1

¹⁵N chemical shifts and ¹J(¹⁵N,¹H) and ¹J(¹⁵N,¹⁵N) coupling constants (Hz, ±0.2 Hz) of compound 1 in several solvents at 300 K

	CDCl ₃	CD ₃ CN	$(CD_3)_{2}SO$	CD ₃ OH
$\delta(^{15}N)_{-N=}$	-102.8	-99.9	-98.6	-102.2
$\delta(^{15}N)_{-NH-}$	-251.4	-250.9	-249.2	-250.9
1^{1} $\left[$ 15 N, 1 H) $\right]$	88.3 ^a	89.0	$90.0^{\rm a}$	89.0
1^{1} $\frac{15}{15}$ N, 1^{15} N) 1	12.2	12.3	12.2	12.1

^a The same value was observed at 330 K.

Figure 6. Parts of the 1D¹⁵N INADEQUATE spectrum of ¹⁵N completely labelled compound 1 in hexadeuteriodimethyl sulfoxide optimised for $\frac{1}{1}$ ($\frac{15}{N}$, $\frac{15}{N}$) = 12 Hz.

coupling constant values measured at 300 and 330 K, respectively, indicating no change in the tautomeric equilibrium.

In addition to the known NMR methods mentioned in a recent review,10 dealing with the use of NMR spectroscopy to study tautomerism, the application of $T/(T^5N)^{15}N$) coupling constants represents a new experimental tool that can be used in determining tautomeric structures, especially in symmetrical molecules similar to dihydro-1,2,4,5-tetrazines.

Acknowledgements

The authors thank VCI Brasil and the Ministry of Education, Youth and Sports of the Czech Republic (Grant No: MSM 0021627501) for the financial support.

References and notes

- 1. Rau, G.-W.; Hu, W.-X. Acta Crystallogr., Sect. E **2005**, 61, 3664–3665.
2. Oxtoby, N. S.; Blake, A. J.; Champness, N. R.; Wilson, C. CrystEngCom
- 2. Oxtoby, N. S.; Blake, A. J.; Champness, N. R.; Wilson, C. CrystEngComm 2003, 5, 82–86.
- 3. Palmas, P.; Girard, E.; Pasquinet, E.; Caron, T.; Poullain, D. Magn. Reson. Chem. 2007, 45, 65–71.
- 4. Boger, D. L.; Panek, J. S. *J. Am. Chem. Soc.* **1985**, 107, 5745–5754.
5. Frebort, Š.; Almonasy, N.; Hrdina, R.; Lyčka, A.; Lísa, M.; Holčapek, M. *Collect*. Czech. Chem. Commun. 2008, 73, 107–115.
- 6. Lyčka, A.; Fryšová, I.; Slouka, J. Magn. Reson. Chem. 2007, 45, 46-50.
- 7. Lyčka, A.; Macháček, V. Dyes Pigm. 1986, 7, 171-185.
- 8. Berger, S.; Braun, S.; Kalinowski, H.-O. NMR Spectroscopy of the Non-Metallic Elements; Wiley: Chichester, 1997; p 273.
- 9. Witanowski, M.; Stefaniak, L.; Webb, G. A. Annu. Rep. NMR Spectr. 1993, 25, 76.
- 10. Claramunt, R. M.; López, C.; Santa Maria, M. D.; Sanz, D.; Elguero, J. Prog. NMR Spect. 2006, 49, 169–206.